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Phenomena associated with acoustic cavitation in liquids are

observed to change abruptly in magnitude with small changes in

the amplitude of the acoustic pressure or intensity. The amplitudes

at which changes occur are called cavitation thresholds. Investiga-

tors have noted that, once such thresholds have been exceeded, the

phenomenon being observed rises to a maximum and then decreases.
1

L. D. Rozenberg was perhaps the first to point out the existence of

these maxima.

Many experimenters have determined both the existence and

magnitude of cavitation thresholds, using erosion of solids,

cavitation noise, chemical reactions And bioloqical effects as the

cavitation phenomena under observation. 2 The work of Kaufman,

Miller, Griffiths, Ciaravino and Carstensen3 and of Clarke and

Hill 4 may be cited as examples of the use of biological effects in
5

threshold measurements, while that of Neppiras and Coakley may be

cited as an example of use of cavitation noise. For brevity, the

term "cavitation activity" will be used to denote the wide range of

phenomena associated with cavitation fields or zones and used by

various experimenters to demonstrate the existence of thresholds as

functions of pressure or intensity.

Attention will be limited here to the remarkable papers of

Monakhov, Peshkovskii, Popovich, Fomichev, Chinyakov and Yakovlev
6

and Brandt, Yakovlev and Peshkovskii7. These workers observed two

cavitation thresholds -- one for the onset of cavitation activity

and a second for a marked decrease in cavitation activity (except



2

for the radiation of noise). Monakhov et al distinguished three

regimes of cavitation. Below the first threshold, there was no

cavitation activity. Above the second threshold, cavitation

activity (as evidenced by erosion, for example) virtually ceased,
large bubbles were observed and the liquid resembled boiling water.

Monakhov et al carried cut their experiments at a single acoustic

frequency (17.8 kHz) in water that presumably contained gas "seeds"

or "nuclei" having a wide distribution of initial radii. In the

terminology suggested by this author 2'9 the first regime of Monakhov

et al would be a zone containing only stable cavities while the

regime bounded by the two thresholds would be a zone dominated by

transient cavities. In the third regime, the zone would again be

dominated by bubbles that behave much as stable cavities.

An objective of this paper is to seek a dynamical basis for

the existence of such thresholds and of the observe%. maxima in

cavitation activity. This paper is the third in a series on

cavitation dynamics. In the first 8 , hereinafter referred to as CD:I,

a mathematical formulation for predicting the motion of, and other

quantities associated with,a small cavity set into motion by an

acoustic pressure field in a liquid was derived. This formulation

consists of a set of differential, integral and algebraic non-linear

equations that take into account compressibility and viscosity of

the liquid, heat conduction across the interface and surface tension.

The equations have been programmed for solution on a digital com-

puter. In the second paper 9 , hereinafter referred to as CD:II,

this formulation was used to study the free pulsations of small

argon-filled cavities in water. The results presented in CD:II

(and in an expanded report 0) are fundamental to the interpretation

of calculations reported here.

The limitations on the usefulness of such a mathematical model

include the assumptions that the speed of sound in the liquid is

constant (that is, the variational pressure is a linear function of

the variational density), that the cavity retains its spherical

shape throughout its motion, that the amount of gas in the cavity

remains constant and that the gas in the cavity behaves as an ideal

gas.

In the calculations reported here, a pre-existing seed of argon
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in water grows into a cavity under .ne influence of a uniform,

sinusoidal acoustic field characterized by a pressure amplitude, PA'

and a frequency, fA'

The system of notation adopted iln CD:I will be ured in this

paper. An asterisk (*) is used to denote a quantity in some con-

sistent set or units. In this notation, p is a pressure in bars

and p = p /Pn is the non-dimensional pressure where PZn is the
n t

reference pressure (here taken to be 1 bar). Thus P A is the non-

dimensional pressure amplitude, PA/pn .  The quantity R = R /Rn
is the non-dimensional radius of the cavity, R its radius in

centimeters and Rn the initial radius of the cavity in centimeters,n** ,

The frequency, f, is the non-dimensional frequency f tn where f

is the frequency in Hertz and tn = R n/an and an is the equilibrium
speed of sound in the liquid.

Once set into motion, the cavity passes through a series of

maxima and minima and its motion may or may not be periodic. The

complexity of this non-linear motion results from the tendency of

the cavity to pulsate both at the driving frequency, fA' and at

some resonance frequency, fr' of free pulsation as determined in

CD:II. When the motion is periodic, there is a least period, TL, in

which the motion repeats itself. This least period, TL, must be an

integral multiple of both the acoustic period, TA = 1/fA and the

period of free pulsation, Tr = 1/f r; that is, for a periodic motion,

TL = m Tr = n T where n and m are integers. Of particular interestL A
is the case where m = 1 and TL = Tr = n TA. The motion is then said

to contain a subharmonic order n (or, in terms of frequency,

f = f = f /n and there is said to be a subharmonic of order 1/n).
L r A/

Most motions of cavities in an acoustic pressure field are

quasi-periodic; that is, the radius-time curve shows a slowly

varying time iftterval that approximates a least period, TL, and the

maxima and minima in such a period change slowly in amplitude and

phase from one such quasi-period to the next.

The non-linear motion of a cavity is thus a combination of a

free pulsation and a driven pulsation, both of which contain a

fundamental and associated harmonics. The driven pulsation has

the period, TA, of the acoustic field, but the period of the free
pulsation, Tr, depends on the amplitude of motion, as shown in CD:II.

In general, in a least period, TL, the radius time curve will be

quite complicated. However, when the amplitude of



motion is such that the period, Tr, of free pulsation

equals the acoustic period, TA, then the motion consists
of a single maximum and a single minimum in a least period,

TL = TA = T . The frequency fr at which this coincidence takes

place is the non-linear resonance frequency for a cavity of initial

radius, Rn, in an acoustic field specified by the pair (PA' TA).

This non-linear resonance frequency is always less than the linear

resonance frequency, f0, for a cavity pulsating with very small

change in radius.

Curves of the resonance frequency, fr' as a function of the

maximum radius, Ro, are shown in Fig. 2 and Reference 10 for

various values of inttial cavity radius, Rn When a cavity of

initial radius, Rn, is driven at an acoustic frequency, fA' these

curves tell us the maximum radius, R0 , at which the specified fA

equals some resonance frequency, fr' of that cavity. In a non-

linear pulsation at a frequency close to some fr' the radius-time

curve has an unique maximum, R., corresponding to the specified

pressure amplitude, PA" This pressure amplitude at which the

acoustic frequency fA' equals a resonance frequency, fr' will be

called the resonance nressure, Pr"

We shall find that the resonance pressure, Pr' determines one

cavitation threshold. Another cavitation threshold is defined

through use of a function called the dynamical threshold radius,

Rt, described in CD:II for free pulsations. When the maximum,
radius, R., of an expanding cavity of initial radius, Rn, exceeds

the threshold radius, the cavity is a transient cavity. When such

a cavity collapses, inertial forces in the surrounding liquid

generate rapidly increasing kinetic energy that is either stored

in the compressible liquid or converted into internal energy of

the cavity contents. Ultimately, the inward motion is halted by

the pressure in the cavity and part of the stored energy radiated

as a shock wave. Most of the phenomena summed up as cavitation

activity are brought about by transient cavities.

Determination of the threshold radius, Rt, requires partition

of the acceleration of the cavity interface into two functions: th(

pressure function, PF, and the inertial function, IF. When a

cavity starts to contract from a maximum, Ro, PF first decreases,

passes through a minimum and then increases. IF is a function of
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the maximum radius, Ro , at the start of collapse, and the value of
R for which IF intersects this minimum is the threshold radius, Rt .

When a cavity of initial radius R pulsates in an acousticn
pressure field of frequency fA' its maximum radius increases when

the pressure amplitude, PA' increases. The value of PA which causes

R to equal or exceed Rt will be called the threshold pressure, Pt.

It is qualitatively obvious that cavitation activity must

increase with acoustic pressure, but must eventually decrease. As

the pressure amplitude increases the average volume of a cavity

becomes much larger than its equilibrium volume and the cavity

spends most of a period, TL' in such an expanded state. The liquid

then becomes much more compressible and this increase in compressi-

bility strongly moderates the violence of collapse. The exciting

sound beam is both scattered and absorbed by the increased cross-

sections of the cavil-ies and the radiated shock waves from collapsing

cavities will likewise be scattered and absorbed by surrounding

cavities. Because there may be an enormous number of cavitation

events per cm. 3 in a cavitation zone, any increase in the average

size of cavities may have a drastic effect on cavitation activity.

Sirotyuk estimates that there may be as many as 106 cavitation
3

events per cm.

The mathematical model of CD:I used in carrying out the calcula-

tions reported here predict the motion of a single cavity in an

infinite, homogeneous liquid. With this restriction in mind, two

quantities have been chosen for calculation

they might give insight into the thresholds observed in zones

containing many bubbles with a wide distribution of initial radii.

These quantities are the maximum pressure, Pm' in a collapsing

cavity and the work, WE, done by a cavity on the surrounding liquid

in expanding from its minimum radius, Rm, to a maximum radius, R

This work is WE = WE/Wn where Wn = 0.88 kiloJoules mol-

The maximum pressure, pm' determines the initial strength of

the radiated shock from a collapsed cavity and WE measures the

transfer of energy to the liquid by the compressed gas in the cavity.

In any expansion, most of the work, WE, is done in the initial stage

when R is close to Rm. Thus, while pm determines the strength

of the shock front, WE determines the width and magnitude of the
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shock wave behind the front. Because the least period TL, may be

many times the acoustic per.od, TA, the work, WE, is here defined

as the average work done by an expanding cavity in an acoustic

period, TA' the average being taken over values in the least

period, TL-

Fig. 1 shows the maximum pressure, p' predicted for a cavity

of initial radius R = 5 x 10 cm. as a function of the acoustic

pressure amplitude, PA' for three frequencies of the acoustic

field. These frequencies, 600 kHz, 300 kHz, and 100 kHz, are

approximately equal to f0 f0/2 and f0/6 where f0 is the linear

resonance frequency of the cavity.

At the calculated threshold pressure, Pt, there is a marked

change in the maximum pressure at 300 kHz and 100 kHz. At 600 kHz

the inertial function IF always lies above the minimum in PF and

Pt is undetermined.

We can draw two conclusions from the location of the resonance

pressure, Pr' on these curves. Most points on these curves are

accompanied by an integer. This integer indicates the least period

in terms of T Thus n = 1 means TL = TA, while n = 4 means that

TL = 4 TA and a subharmonic of order 1/4 exists. The location of

Pr divides each curve into two parts. Below Pr only one subharmonic

could be found, while above Pr there exists a profusion of sub-

harmonics of various orders. At 300 kHz and 100 kt~z, the curves of

Pm abruptly decrease in slope in the vicinity of Pr' but at 600 kHz

the change in slope is much less marked. ,
Fig. 3 shows the maximum pressure, pm' as a function of the

*
acoustic pressure amplitude, PA' for Lhree different cavit-is.

Each cavity is driven at a frequency equal approximately to f /2

corresponding to its initial radius, Rn. On all three curves the

threshold pressure, P marks an abrupt change in the slope of the

curve and in the vicinity of the resonance pressure, Pr' there is

an even more pronounced decrease in the slope of pm as a function,
of PA' Again, there are subharmonics in abundance above Pr but
only one below it.

The maximum pressure curves would lead us to identify Pt

with the first cavitation pressure threshold of Monakhov et al

and the resonance pressure, Pr' at which fA = fr with the second

cavitation pressure threshold. At Pr the maximum radius, R0 , is
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the resonance radius for the driving frequency, fA" These con-

clusions would appear to apply only to cavities driven at frequencies

well below the linear resonance frequency, fo

The work, WE, per T done by an expanding cavity is shown

in Fig. 4 as a function of the acoustic pressure amplitude, PA'

for a cavity of initial radius, R 5 x 10 cm. For this cal-n
culated quantity it is even clearer that Pt and Pr are the first

and second pressure thresholds, at least for fA much less than f
A*0

Fig. 5 shows WE as afunction of PA for three different

cavities. Each cavity is driven at a frequency fA approximately

equal to f0/2. For each cavitv, Pr is the pressure threshold at

which there is a marked decrease in the slope of the curves. For

the 5 x 105 cm. cavity, Pt does not appear to act as a threshold

while the point at PA = 4 bars does. The significance of this

remark lies in the fact that, at this pressure, a quantity called

the energy dissipation modulus, AW/W m, defined in CD:II, is a

maximum. Again, in the curves for WE' subharmonics appear in

general only above the second threshold, Pr

The calculations reported here predict the behavior of a

single bubble in an infinite, homogeneous liquid, and one must

be cautious in seeking quantitative correspondences with experi-

mental results, which in general are statistical averages over

many bubbles. The maxima characteristic of cavitation activity do

not appear, nor should we expect them to. However, the results

clearly give us useful insights into experiments such as those

of Monakhov et al. Thus, despite these restrictions, there are

several general remarks that can be made about the results reported

in this paper:

1. The quantity, Pt, is a pressure threshold at which cavitation

actively rapidly increases for any driving frequency, fA' well

below fo, the linear resonance frequency of a cavity. Tentatively,

Pt may be identified as the first cavitation threshold of Monakhov

et al.

2. On the other hand, Pt does not appear to be a cavitation
t*

threshold when fA is approximately equal to f0 or Rn is less

than a micron. When Rn is less than a micron, the first cavitation
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threshold may occur when the energy dissipation modulus, AW/Wm

is a maximum, as suggested in CD:II.

3. A second pressure threshold, Pr' occurs when the driving

frequency, fA' equals a non-linear resonance frequency, fr' of the

cavity. Tentatively, Pr may be identified with the second threshold

of Monakhov et al.

4. At the second threshold, Pr' both the maximum pressure and WE

change abruptly for driving frequencies less than the linear

resonance frequency of the cavity. Curves of both maximum pressure

and WE tend to flatten out for pressure amplitudes greater than P.

Changes in the medium due to expanded cavitation bubbles, noted

above, may cause these curves to decrease above P
5. Subharmonics in general are present only in the region above

the second threshold, Pr' which may be identified as the region of

reduced cavitation activity defined by !onakhov et al.

6. Cavities with initial radii greater than a micron are more

effective in producing cavitation activity when driven at frequencies

less than their linear resonance frequencies.
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FIGURES

Fig. 1 Maximum pressure in a 5-micron cavity

Fig. 2 Non-linear resonance frequency curve for a 5-micron cavity

Fig. 3 Maximum pressure in three cavities

Fig. 4 Work, WE, done by an expanding 5-micron cavity

Fig. 5 Work, WE, done by three expaihding cavities
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